
© 2002 Microsoft Corporation. All rights reserved. 

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS 
DOCUMENT. Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. 

 

Trustworthy Computing 

Microsoft White Paper 

Craig Mundie – Senior Vice President and CTO, Advanced Strategies and Policy 

Pierre de Vries 

Peter Haynes 

Matt Corwine 

Microsoft Corporation 

October 2002 

The following is a revised version of the paper on Trustworthy Computing we published in January 2002. It 

represents our synthesis of the vast amount of valuable input we have received on the subject since the original 

paper saw the light of day. To everyone who offered their thoughts and help: many thanks. 

Why Trust? 

While many technologies that make use of computing have proven themselves extremely reliable and 

trustworthy—computers helped transport people to the moon and back, they control critical aircraft systems for 

millions of flights every year, and they move trillions of dollars around the globe daily—they generally haven't 

reached the point where people are willing to entrust them with their lives, implicitly or explicitly. Many people are 

reluctant to entrust today's computer systems with their personal information, such as financial and medical 

records, because they are increasingly concerned about the security and reliability of these systems, which they 

view as posing significant societal risk. If computing is to become truly ubiquitous—and fulfill the immense promise 

of technology—we will have to make the computing ecosystem sufficiently trustworthy that people don't worry 

about its fallibility or unreliability the way they do today. 

Trust is a broad concept, and making something trustworthy requires a social infrastructure as well as solid 

engineering. All systems fail from time to time; the legal and commercial practices within which they're embedded 

can compensate for the fact that no technology will ever be perfect. 

Hence this is not only a struggle to make software trustworthy; because computers have to some extent already 

lost people's trust, we will have to overcome a legacy of machines that fail, software that fails, and systems that 

fail. We will have to persuade people that the systems, the software, the services, the people, and the companies 

have all, collectively, achieved a new level of availability, dependability, and confidentiality. We will have to 

overcome the distrust that people now feel for computers. 

The Trustworthy Computing Initiative is a label for a whole range of advances that have to be made for people to 

be as comfortable using devices powered by computers and software as they are today using a device that is 

powered by electricity. It may take us ten to fifteen years to get there, both as an industry and as a society. 

This is a "sea change" not only in the way we write and deliver software, but also in the way our society views 

computing generally. There are immediate problems to be solved, and fundamental open research questions. There 



© 2002 Microsoft Corporation. All rights reserved. 

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS 
DOCUMENT. Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. 

are actions that individuals and companies can and should take, but there are also problems that can only be 

solved collectively by consortia, research communities, nations, and the world as a whole. 

Setting the Stage 

History 

Society has gone through a number of large technology shifts that have shaped the culture: the agrarian 

revolution, the invention of metalworking, the industrial revolution, the advent of electricity, telephony and 

television—and, of course, the microprocessor that made personal computing a reality. Each of these 

fundamentally transformed the way billions of people live, work, communicate, and are entertained. 

Personal computing has so far only really been deployed against white-collar work problems in the developed 

world. (Larger computer systems have also revolutionized manufacturing processes.) However, the steady 

improvement in technology and lowering of costs means that personal computing technology will ultimately 

become a building block of everybody's home and working lives, not just those of white-collar professionals. 

Progress in computing in the last quarter century is akin to the first few decades of electric power. Electricity was 

first adopted in the 1880s by small, labor-intensive businesses that could leverage the technology's fractional 

nature to increase manufacturing productivity (that is, a single power supply was able to power a variety of electric 

motors throughout a plant). In its infancy, electricity in the home was a costly luxury, used by high-income 

households largely for powering electric lights. There was also a good deal of uncertainty about the safety of 

electricity in general and appliances in particular. Electricity was associated with lightning, a lethal natural force, 

and there were no guarantees that sub-standard appliances wouldn't kill their owners. 

Between 1900 and 1920 all that changed. Residents of cities and the fast-growing suburbs had increasing access to 

a range of energy technologies, and competition from gas and oil pushed down electricity prices. A growing number 

of electric-powered, labor-saving devices, such as vacuum cleaners and refrigerators, meant that households were 

increasingly dependent on electricity. Marketing campaigns by electricity companies and the emergence of 

standards marks (for example, Underwriters' Laboratories (UL) in the United States) allayed consumer fears. The 

technology was not wholly safe or reliable, but at some point in the first few years of the 20th century, it became 

safe and reliable enough. 

In the computing space, we're not yet at that stage; we're still in the equivalent of electricity's 19th century 

industrial era. Computing has yet to touch and improve every facet of our lives—but it will. It is hard to predict in 

detail the eventual impact that computing will have, just as it was hard to anticipate the consequences of 

electricity, water, gas, telecommunications, air travel, or any other innovation. A key step in getting computing to 

the point where people would be as happy to have a microprocessor in every device as they are relying on 

electricity will be achieving the same degree of relative trustworthiness. "Relative," because 100% trustworthiness 

will never be achieved by any technology—electric power supplies surge and fail, water and gas pipes rupture, 

telephone lines drop, aircraft crash, and so on. 

Trustworthy Technologies in General 

All broadly adopted technologies—like electricity, automobiles or phones—have become trusted parts of our daily 

lives because they are almost always there when we need them, do what we need them to do, and work as 

advertised. 

Almost anyone in the developed world can go buy a new telephone handset and plug it into the phone jack without 

worrying about whether it'll work or not. We simply assume that we'll get a dial tone when we pick up a phone, and 

that we'll be able to hear the other party when we connect. We assume that neither our neighbor nor the insurance 



© 2002 Microsoft Corporation. All rights reserved. 

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS 
DOCUMENT. Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. 

broker down the road will be able to overhear our conversation, or obtain a record of who we've been calling. And 

we generally assume that the phone company will provide and charge for their service as promised. A combination 

of engineering, business practice, and regulation has resulted in people taking phone service for granted. 

One can abstract three broad classes of expectations that users have of any trustworthy technology: safety, 

reliability, and business integrity (that is, the integrity of the organization offering the technology). These 

categories, and their implications for computing, are discussed in more detail below. 

Trustworthy Computing 

Computing devices and information services will only be truly pervasive when they are so dependable that we can 

just forget about them. In other words, at a time where computers are starting to find their way into just about 

every aspect of our life, we need to be able to trust them. Yet the way we build computers, and the way that we 

now build services around those computers, hasn't really changed that much in the last 30 or 40 years. It will need 

to. 

A Framework for Trustworthy Computing 

We failed to find an existing taxonomy that could provide a framework for discussing Trustworthy Computing. 

There is no shortage of trust initiatives, but the focus of each is narrow. For example, there are treatments of trust 

in e-commerce transactions and trust between authentication systems, and analyses of public perceptions of 

computing, but a truly effective approach needs to integrate engineering, policy, and user attitudes. Even just on 

the engineering side, our scope is broader than, say, the SysTrust/SAS70 models, which deal purely with large 

online systems. 

First, there are the machines themselves. They need to be reliable enough that we can embed them in all kinds of 

devices—in other words, they shouldn't fail more frequently than other similarly important technologies in our lives. 

Then there's the software that operates those machines: do people trust it to be equally reliable? And finally there 

are the service components, which are also largely software-dependent. This is a particularly complicated problem, 

because today we have to build dependability into an end-to-end, richly interconnected (and sometimes federated) 

system. 

Since trust is a complex concept, it is helpful to analyze the objective of Trustworthy Computing from a number of 

different perspectives. We define three dimensions with which to describe different perspectives on trust: Goals, 

Means, and Execution. 

Goals 

The Goals consider trust from the user's point of view. The key questions are: Is the technology there when I need 

it? Does it keep my confidential information safe? Does it do what it's supposed to do? And do the people who own 

and operate the business that provides it always do the right thing? These are the goals that any Trustworthy 

Computing has to meet: 

Goals The basis for a customer's decision to trust a system 

Security The customer can expect that systems are resilient to attack, and that 

the confidentiality, integrity, and availability of the system and its data 

are protected. 

Privacy The customer is able to control data about themselves, and those using 

such data adhere to fair information principles 



© 2002 Microsoft Corporation. All rights reserved. 

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS 
DOCUMENT. Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. 

Reliability  The customer can depend on the product to fulfill its functions when 

required to do so. 

Business Integrity The vendor of a product behaves in a responsive and responsible 

manner. 

The trust Goals cover both rational expectations of performance—that is, those that are amenable to engineering 

and technology solutions—and more subjective assessments of behavior that are the result of reputation, 

prejudice, word of mouth, and personal experience. All of these goals raise issues relating to engineering, business 

practices, and public perceptions, although not all to the same degree. In order to clarify terms, here are examples 

for the Goals: 

 Security: A virus doesn't infect and crash my PC. An intruder cannot render my system unusable or make 

unauthorized alterations to my data. 

 Privacy: My personal information isn't disclosed in unauthorized ways. When I provide personal 

information to others, I am clearly informed of what will—and won't—be done with it, and I can be sure 

they will do what they promise. 

 Reliability: When I install new software, I don't have to worry about whether it will work properly with my 

existing applications. I can read my email whenever I want by clicking the Hotmail link on msn.com. I 

never get "system unavailable" messages. The Calendar doesn't suddenly lose all my appointments. 

 Business Integrity: My service provider responds rapidly and effectively when I report a problem. 

Means 

Once the Goals are in place, we can look at the problem from the industry's point of view. Means are the business 

and engineering considerations that are employed to meet the Goals; they are the nuts and bolts of a trustworthy 

service. Whereas the Goals are largely oriented towards the end-user, the Means are inwardly facing, intra-

company considerations. Think of the Goals as what is delivered, and the Means as how. 

Means The business and engineering considerations that enable a 

system supplier to deliver on the Goals 

Secure by Design, 

Secure by Default, 

Secure in 

Deployment 

Steps have been taken to protect the confidentiality, integrity, and 

availability of data and systems at every phase of the software 

development process—from design, to delivery, to maintenance. 

Fair Information 

Principles 

End-user data is never collected and shared with people or 

organizations without the consent of the individual. Privacy is respected 

when information is collected, stored, and used consistent with Fair 

Information Practices.  

Availability The system is present and ready for use as required. 

Manageability The system is easy to install and manage, relative to its size and 

complexity. (Scalability, efficiency and cost-effectiveness are 

considered to be part of manageability.) 

Accuracy The system performs its functions correctly. Results of calculations are 



© 2002 Microsoft Corporation. All rights reserved. 

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS 
DOCUMENT. Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. 

free from error, and data is protected from loss or corruption. 

Usability The software is easy to use and suitable to the user's needs. 

Responsiveness The company accepts responsibility for problems, and takes action to 

correct them. Help is provided to customers in planning for, installing 

and operating the product. 

Transparency The company is open in its dealings with customers. Its motives are 

clear, it keeps its word, and customers know where they stand in a 

transaction or interaction with the company. 

Some examples: 

 Secure by Design: An architecture might be designed to use triple-DES encryption for sensitive data such 

as passwords before storing them in a database, and the use of the SSL protocol to transport data across 

the Internet. All code is thoroughly checked for common vulnerabilities using automatic or manual tools. 

Threat modeling is built into the software design process. 

 Secure by Default: Software is shipped with security measures in place and potentially vulnerable 

components disabled. 

 Secure by Deployment: Security updates are easy to find and install—and eventually install themselves 

automatically—and tools are available to assess and manage security risks across large organizations. 

 Privacy/Fair Information Principles: Users are given appropriate notice of how their personal information 

may be collected and used; they are given access to view such information and the opportunity to correct 

it; data is never collected or shared without the individual's consent; appropriate means are taken to 

ensure the security of personal information; external and internal auditing procedures ensure compliance 

with stated intentions. 

 Availability: The operating system is chosen to maximize MTBF (Mean Time Between Failures). Services 

have defined and communicated performance objectives, policies, and standards for system availability. 

 Manageability: The system is designed to be as self-managing as practicable. Hotfixes and software 

updates can be installed with minimal user intervention. 

 Accuracy: The design of a system includes RAID arrays, sufficient redundancy, and other means to reduce 

loss or corruption of data. 

 Usability: The user interface is uncluttered and intuitive. Alerts and dialog boxes are helpful and 

appropriately worded. 

 Responsiveness: Quality-assurance checks occur from early on in a project. Management makes it clear 

that reliability and security take precedence over feature richness or ship date. Services are constantly 

monitored and action is taken whenever performance doesn't meet stated objectives. 

 Transparency: Contracts between businesses are framed as win-win arrangements, not an opportunity to 

extract the maximum possible revenue for one party in the short term. The company communicates 

clearly and honestly with all its stake holders. 

Execution 

Execution is the way an organization conducts its operations to deliver the components required for Trustworthy 

Computing. There are three aspects to this: Intents, Implementation, and Evidence. Intents are the corporate and 



© 2002 Microsoft Corporation. All rights reserved. 

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS 
DOCUMENT. Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. 

legislative guidance that sets requirements for the design, implementation, and support of the product. 

Implementation is the business process that operationalizes the Intents. Evidence is the mechanism by which we 

verify that the Implementation has delivered on the Intent. Some examples: 

Intents  Company policies, directives, benchmarks, and guidelines 

 Contracts and undertakings with customers, including Service 

Level Agreements (SLAs) 

 Corporate, industry and regulatory standards 

 Government legislation, policies, and regulations 

Implementation  Risk analysis 

 Development practices, including architecture, coding, 

documentation, and testing 

 Training and education 

 Terms of business 

 Marketing and sales practices 

 Operations practices, including deployment, maintenance, sales & 

support, and risk management 

 Enforcement of intents and dispute resolution  

Evidence  Self-assessment 

 Accreditation by third parties 

 External audit  

This problem can only be tackled by working on two parallel tracks. 

The first track is the immediate problems—what people read and worry about every day. We need to address 

known current problems and mitigate currently known weaknesses. This is also a way to learn about the more 

fundamental problems. We need to be as well-informed as we can about what is really going on and what we can 

and cannot fix within the constraints of the current systems. 

Part of the reason for customer anxiety is that personal computers are now entering areas that they didn't 

previously worry about. It will be easiest to focus on areas like banking or banking services where such problems 

are well known and of long standing. 

While there is a lot of work to be done through incrementally improving current systems, these efforts will not 

solve the fundamental problems, some of which are described in the next section. 

The computer industry needs to identify and solve the most critical challenges, and fold the solutions in an 

incremental way into the huge legacy systems that have been built. There will be long technological replacement 

cycle during which the critical infrastructure systems that society depends on are gradually upgraded to a new and 

improved status. If these systems already exist, people are not just going to throw them out the window and start 

over from scratch. So we have to identify critical infrastructure and systems weaknesses and upgrade them on a 

high-priority basis, and ensure that new infrastructures are built on sound principles. 

Fundamental Problems 

Policy 



© 2002 Microsoft Corporation. All rights reserved. 

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS 
DOCUMENT. Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. 

Once a technology has become an integral part of how society operates, that society will be more involved in its 

evolution and management. This has happened in railways, telecommunications, TV, energy, etc. Society is only 

now coming to grips with the fact that it is critically dependent on computers. 

We are entering an era of tension between the entrepreneurial energy that leads to innovation and society's need 

to regulate a critical resource despite the risk of stifling competition and inventiveness. This is exacerbated by the 

fact that social norms and their associated legal frameworks change more slowly than technologies. The computer 

industry must find the appropriate balance between the need for a regulatory regime and the impulses of an 

industry that has grown up unregulated and relying upon de facto standards. 

Many contemporary infrastructure reliability problems are really policy issues. The state of California's recent 

electricity supply crisis was triggered largely by a bungled privatization. The poor coverage and service of US 

cellular service providers is due in part to the FCC's policy of not granting nationwide licenses. These policy 

questions often cross national borders, as illustrated by the struggle to establish global standards for third-

generation cellular technologies. Existing users of spectrum (often the military) occupy different bands in different 

countries, and resist giving them up, making it difficult to find common spectrum worldwide. 

Processing 

Complexity 

We are seeing the advent of mega-scale computing systems built out of loose affiliations of services, machines, and 

application software. The emergent (and very different) behavior of such systems is a growing long-term risk. 

An architecture built on diversity is robust, but it also operates on the edge of chaos. This holds true in all very-

large-scale systems, from natural systems like the weather to human-made systems like markets and the power 

grid. All the previous mega-scale systems that we've built—the power grid, the telephone systems—have 

experienced unpredicted emergent behavior. That is why in 1965 the power grid failed and rippled down the whole 

East Coast of the United States, and that's why whole cities occasionally drop off the telephone network when 

somebody implements a bug fix on a single switch. The complexity of the system has outstripped the ability of any 

one person—or any single entity—to understand all of the interactions. 

Incredibly secure and trustworthy computer systems exist today, but they are largely independent, single-purpose 

systems that are meticulously engineered and then isolated. We really don't know what's going to happen as we 

dynamically stitch together billions—perhaps even trillions—of intelligent and interdependent devices that span 

many different types and generations of software and architectures. 

As the power of computers increase, in both storage and computational capacity, the absolute scale, and 

complexity of the attendant software goes up accordingly. This manifests itself in many ways, ranging from how 

you administer these machines to how you know when they are broken, how you repair them, and how you add 

more capability. All these aspects ultimately play into whether people perceive the system as trustworthy. 

Hardware, Redundancy 

We don't yet have really good economical, widely used mechanisms for building ultra-reliable hardware. However, 

we do have an environment where it may become common-place to have 200+ million transistors on a single chip. 

At some point it becomes worthwhile to make that into four parallel systems that are redundant and therefore 

more resistant to failure. The marginal cost of having this redundancy within a single component may be 

acceptable. Similarly, a computer manufacturer or end user may choose to install two smaller hard drives to mirror 

their data, greatly improving its integrity in the event of a disk crash. 

We may have new architectural approaches to survivability in computer systems these days, but it always comes 

from redundancy. This means you have to buy that redundancy. So people will, in fact, again have to decide: Do 



© 2002 Microsoft Corporation. All rights reserved. 

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS 
DOCUMENT. Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. 

they want to save money but potentially deal with more failure? Or are they willing to spend more money or deal 

with more complexity and administrative overhead in order to resolve the appropriate aspects of security, privacy, 

and technological sufficiency that will solve these problems? 

Machine-to-Machine Processes 

The Web Services model is characterized by computing at the edge of the network. Peer-to-peer applications will 

be the rule, and there will be distributed processing and storage. An administrative regime for such a system 

requires sophisticated machine-to-machine processes. Data will be self-describing. Machines will be loosely 

coupled, self-configuring, and self-organizing. They will manage themselves to conform to policy set at the center. 

Web applications will have to be designed to operate in an asynchronous world. In the PC paradigm, a machine 

knows where its peripherals are; the associations have been established (by the user or by software) at some point 

in the past. When something disrupts that synchronicity, the software sometimes simply hangs or dies. Improved 

plug-and-play device support in Windows XP and "hot-pluggable" architectures such as USB and IEEE 1394 point 

the way toward a truly "asynchronous" PC, but these dependencies do still exist at times. 

On the Web, however, devices come and go, and latency is highly variable. Robust Web architectures need 

dynamic discoverability and automatic configuration. If you accept the idea that everything is loosely coupled and 

asynchronous, you introduce even more opportunities for failure. For every potential interaction, you have to 

entertain the idea that it won't actually occur, because the Web is only a "best-effort" mechanism—if you click and 

get no result, you click again. Every computing system therefore has to be redesigned to recover from failed 

interactions. 

Identity 

Questions of identity are sometimes raised in the context of Trustworthy Computing. Identity is not explicitly called 

out in the framework, because a user does not expect a computer system to generate their identity. However, user 

identity is a core concept against which services are provided. Assertions of identity (that is, authentication) need 

to be robust, so that taking actions that depend on identity (that is, authorization) can be done reliably. Hence, 

users expect their identities to be safe from unwanted use. 

Identity is difficult to define in general, but particularly so in the digital realm. We use the working definition that 

identity is the persistent, collective aspects of a set of distinguishing characteristics by which a person (or thing) is 

recognizable or known. Identity is diffuse and context-dependent because these aspect "snippets" are stored all 

over the place in digital, physical, and emotional form. Some of this identity is "owned" by the user, but a lot of it 

is conferred by others, either legally (for example, by governments or companies) or as informal social recognition. 

Many elements of Trustworthy Computing systems impinge on identity. Users worry about the privacy of computer 

systems in part because they realize that seemingly unrelated aspects of their identity can be reassembled more 

easily when the snippets are in digital form. This is best evidenced by growing public fear of credit-card fraud and 

identity theft as a result of the relative transparency and anonymity of the Internet versus offline transactions, 

even though both crimes are equally possible in the physical world. Users expect that information about 

themselves, including those aspects that make up identity, are not disclosed in unapproved ways. 

People 

It's already challenging to manage extremely large networks of computers, and it's just getting harder. The 

immensity of this challenge has been masked by the fact that up to this point we have generally hired professionals 

to manage large systems. The shortcomings of the machines, the networks, the administration, the tools, and the 

applications themselves are often mitigated by talented systems managers working hard to compensate for the fact 

that these components don't always work as expected or desired. 



© 2002 Microsoft Corporation. All rights reserved. 

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS 
DOCUMENT. Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. 

Many of the system failures that get a lot of attention happen because of system complexity. People make an 

administrator error, fail to install a patch, or configure a firewall incorrectly, and a simple failure cascades into a 

catastrophic one. There is a very strong dependency on human operators doing the right thing, day in and day out. 

There are already too few knowledgeable administrators, and we're losing ground. Worse, the needs of 

administration are evolving beyond professional IT managers. On the one hand we are at the point where even the 

best operators struggle: systems are changing too rapidly for people to comprehend. On the other, the bulk of 

computers will eventually end up in non-managed environments that people own, carry around with them, or have 

in their car or their house. 

We therefore need to make it easier for people to get the right thing to happen consistently with minimal human 

intervention. We must aim towards a point where decision-makers can set policy and have it deployed to 

thousands of machines without significant ongoing effort in writing programs, pulling levers, and pushing buttons 

on administrators' consoles. 

The industry can address this in any of a number of ways. Should we actually write software in a completely 

different way? Should we have system administrators at all? Or should we be developing machines that are able to 

administer other machines without routine human intervention? 

Programming 

Tools 

Each of these approaches requires new classes of software. As the absolute number and complexity of machines 

goes up, the administration problem outstrips the availability and capability of trained people. 

The result is that people in the programming-tools community are going to have to think about developing better 

ways to write programs. People who historically think about how to manage computers are going to have to think 

about how computers can become more self-organizing and self-managing. 

We need to continue to improve programming tools, because programming today is too error-prone. But current 

tools don't adequately support the process because of the number of abstraction layers that require foreground 

management. In other words, the designer needs not only to consider system architecture and platform/library 

issues, but also everything from performance, localization, and maintainability to data structures, multithreading 

and memory management. There is little support for programming in parallel, most control structures are built 

sequentially and the entire process is painfully sequential. And that is just in development; at the deployment level 

it is incredibly difficult to test for complex interactions of systems, versions, and the huge range in deployment 

environments. There is also the increasing diffusion of tools that offer advanced development functionality to a 

wider population but do not help novice or naive users write good code. There are also issues around long-term 

perspectives: for example, tools don't support "sunset-ing" or changing trends in capability, storage, speed, and so 

on. Think of the enormous effort devoted to Y2K because programmers of the 1960s and 1970s did not expect 

their code would still be in use on machines that far outstripped the capabilities of the machines of that era. 

Interoperability 

The growth of the Internet was proof that interoperable technologies—from TCP/IP to HTTP—are critical to building 

large-scale, multipurpose computing systems that people find useful and compelling. (Similarly, interoperable 

standards, enforced by technology, policy or both, have driven the success of many other technologies, from 

railroads to television.) It is obvious and unavoidable that interoperable systems will drive computing for quite 

some time. 

But interoperability presents a unique set of problems for the industry, in terms of technologies, policies and 

business practices. Current "trustworthy" computing systems, such as the air-traffic-control network, are very 



© 2002 Microsoft Corporation. All rights reserved. 

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS 
DOCUMENT. Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. 

complex and richly interdependent, but they are also engineered for a specific purpose, rarely modified, and strictly 

controlled by a central authority. The question remains whether a distributed, loosely organized, flexible, and 

dynamic computing system—dependent on interoperable technologies—can ever reach the same level of reliability 

and trustworthiness. 

Interoperability also poses a problem in terms of accountability and trust, in that responsibility for shortcomings is 

more difficult to assign. If today's Internet—built on the principle of decentralization and collective management—

were to suffer some kind of massive failure, who is held responsible? One major reason why people are reluctant to 

trust the Internet is that they can't easily identify who is responsible for its shortcomings – who would you blame 

for a catastrophic network outage, or the collapse of the Domain Name System? If we are to create and benefit 

from a massively interoperable (and interdependent) system that people can trust, we must clearly draw the lines 

as to who is accountable for what. 

Conceptual models 

We face a fundamental problem with Trustworthy Computing: computer science lacks a theoretical framework. 

Computer security—itself just one component of Trustworthy Computing—has largely been treated as an offshoot 

of communications security, which is based on cryptography. Cryptography has a solid mathematical basis, but is 

clearly inadequate for addressing the problems of trusted systems. As Microsoft researcher Jim Kajiya has put it, 

"It's as if we're building steam engines but we don't understand thermodynamics." The computer-science 

community has not yet identified an alternative paradigm; we're stuck with crypto. There may be research in 

computational combinatorics, or a different kind of information theory that seeks to study the basic nature of 

information transfer, or research in cooperative phenomena in computing, that may eventually form part of an 

alternative. But, today this is only speculation. 

A computing system is only as trustworthy as its weakest link. The weakest link is all too frequently human: a 

person producing a poor design in the face of complexity, an administrator incorrectly configuring a system, a 

business person choosing to deliver features over reliability, or a support technician falling victim to impostors via a 

"social engineering" hack. The interaction between sociology and technology will be a critical research area for 

Trustworthy Computing. So far there is hardly any cross-fertilization between these fields. 

Summary 

 Delivering Trustworthy Computing is essential not only to the health of the computer industry, but also to 

our economy and society at large. 

 Trustworthy Computing is a multi-dimensional set of issues. All of them accrue to four goals: Security, 

Privacy, Reliability, and Business Integrity. Each demands attention. 

 While important short-term work needs to be done, hard problems that require fundamental research and 

advances in engineering will remain. 

 Both hardware and software companies, as well as academic and government research institutions, need 

to step up to the challenge of tackling these problems. 


